jimbosmith316
MuscleChemistry
“Herd Immunity.” The flawed science and failures of mass vaccination, Suzanne Humphries, MD
vaccinationcouncil.org/2012/07/05/herd-immunity-the-flawed-science-and-failures-of-mass-vaccination-suzanne-humphries-md-3/
The hype about herd immunity unfortunately creates a wall of hostility between those who vaccinate and those who delay some vaccines, avoid certain vaccines, or quit vaccinating altogether.
Since the beginning of vaccination, there is little proof that vaccines are responsible for eradicating disease even when herd immunity vaccination levels have been reached. Yet celebrity doctors rattle on about your unvaccinated neighbor being the biggest threat to your child – as if vaccination was the only way to avoid an illness or stay healthy.
To make matters worse, this intimidation to vaccinate is played out in an environment where WHO and vaccine manufacturers have been accused of scandalous misrepresentations of disease risk or vaccine safety and effectiveness. If the allegations against these entities are true, which I believe they are, we are being systematically altered, sickened and manipulated by powerful governing bodies that either don’t understand the risks of vaccination, or don’t care. We are told that the health of the herd is more important than any single life, and you now have no conventional legal recourse when your little sheep is wounded by any type of vaccine, no matter how it happened.
The money factor
The population of the world is expanding over the past 200 years where vaccines have been used, and this makes obtaining herd immunity even more expensive and impossible today than ever. How many billions of people would need to be vaccinated how many times to eradicate just one illness based on the theory of vaccine herd immunity? How much would that cost? Consider the cost of vaccines, refrigeration, vaccinators, and hazardous waste removal. Just look at chicken pox vaccine at $7.25 per dose for the CDC discounted price. Each child gets 2 doses. The US census shows 25.7 million children between 0-5 years. Just the cost of the vaccines to vaccinate each of those children, not including the lifetime of boosters, refrigeration, administration and waste, costs the government over 372 million dollars. Chicken pox vaccines are now being exposed for the failure they are, but vaccine profits are still climbing. After the members of the herd stopped transmitting natural immunity to each other because of the vaccine effect, shingles increased. The response- more doses of vaccine for children and a shingles vaccine to adults. HERE is a recent journal abstract describing the failure of herd protection by varicella vaccines. In a SEPARATE DOCUMENT, Dr. Goldman says:
“Prior to the universal varicella vaccination program, 95% of adults experienced natural chickenpox (usually as school aged children)—these cases were usually benign and resulted in long term immunity. This high percentage of individuals having long term immunity has been compromised by mass vaccination of children which provides at best 70 to 90% immunity that is temporary and of unknown duration—shifting chickenpox to a more vulnerable adult population where chickenpox carries 20 times more risk of death and 15 times more risk of hospitalization compared to children. Add to this the adverse effects of both the chickenpox and shingles vaccines as well as the potential for increased risk of shingles for an estimated 30 to 50 years among adults. The Universal Varicella (Chickenpox) Vaccination Program now requires booster vaccines; however, these are less effective than the natural immunity that existed in communities prior to licensure of the varicella vaccine.”
In India, doctors are concerned about profit margins being protected before human lives, with recommendations to vaccinate every child with more expensive, newer vaccines. Dr Jacob Puliyel describes the problems he sees..
“An analysis in the Lancet showed how the Pneumococcal vaccine reduces only 4 cases of pneumonia per 1000 children. The cost for vaccinating 1000 children comes to $ 12,750. Treating the 4 cases of pneumonia in India using WHO protocol, would cost $ 1. The pneumococcus strains prevalent in India are nearly all sensitive to inexpensive antibiotics like penicillin. In the US which has been using the pneumococcal vaccine for some years now, there has been a strain shift – strains covered in the vaccine are being replaced by other strains. Ominously the new strains are more antibiotic resistant. Vaccine has simply made the problem of pneumococcal disease worse. Yet this vaccine is being pushed in Africa and Asia.…It is not about lives lost in poor countries – it is all about the cash register. These organizations and their sponsors have profit margins to protect. Ethics is not a major issue with them.”
The profits to vaccine manufacturers and the government must be enormous.
The CDC is in the vaccine business. Members of the CDC’s Vaccine Advisory Committee accept payment from vaccine manufacturers. Sanofi-Pasteur, Merck and others specifically seek to employ CDC staff once their contracts have run out. Relationships have included sharing a vaccine patent, owning stock in a vaccine company, payments for research, payment to monitor manufacturer vaccine tests, and funding academic departments. Thanks to a 1980 law, the CDC currently holds dozens of licensing agreements. It also has numerous ongoing projects to collaborate on new vaccines.
The science?
What science is there behind the belief that the herd can be protected by vaccinating enough of the sheep? Or that any disease has been eradicated from the planet thanks to a vaccine?
Recently, I was told by a vaccinator that “herd immunity is just a definition and so it can’t actually be wrong. “ But the assumption of a 95% vaccination rate giving the herd a chance at eradication or higher levels of health – can be wrong. Let us go back in time and see just where the idea behind this definition probably comes from. Dr A.W. Hedrich in 1929, studied the natural occurrence of measles.
“On the basis of field surveys of various workers, it is inferred that approximately 95% of the children in cities suffer measles attacks by the fifteenth birthday. “ [1]
Before vaccines, outbreaks of measles were observed in 2 to 3 year cycles, and 95% of the population developed immunity by the age of fifteen.
The original idea that vaccination could strengthen the herd’s immunity, assumed that there was only one clinical event, and that one natural exposure equated life -long immunity. But this was not the case back when the diseases circulated freely. Vaccinators miss the point that the body defends most efficiently as a result of ongoing re-exposure. They try to mimic this with boosters. But the vaccination plan leaves the elderly(due to vaccine-induced immunity being short-lived and antigens taken out of circulation) and the very young(due to lack of transferrable maternal immunity) more vulnerable to several diseases that were not a threat to them before vaccination. In the case of chicken pox, vaccination renders the elderly more apt to shingles infections, because the herd has now lost the continued and benign re-exposures to children with chicken pox.
Instead of figuring out why a very small number develop dangerous invasive conditions, vaccine enthusiasts recommend vaccinating as often as possible in order to protect against something that would never be a danger to the vast majority of those vaccinated. If you constantly swab throats of healthy people most would be carrying and circulating supposed pathogens, as commensals.[2] At any one time in any society, neisseriae(the bacteria isolated in some cases of meningitis) are being circulated, yet most of the time, nothing happens, other than the body notes it, defends against it, and the host has no idea that they even carried it.[3] But now that vaccines for as many types as possible have been developed, the vaccine is the answer to the problem. This is typical for diseases today.
Measles
It is well documented that prior to vaccination, cycles of natural infection added to the herd’s immunity.
“The formal demonstration that both maternal antibodies and early exposure to infection are required for long-term protection illustrated that constant re-infection cycles have an essential role in building a stable herd immunity.
In a population that is not constantly exposed to the infection during early infancy under the immunologic umbrella of maternal antibodies or vaccinated thoroughly a serious risk of re-emerging infections may arise. “ [4]
Vaccination creates a “quasi-sterile” environment that opens up the possibility of disease outbreaks.
“Attempts to eradicate measles virus or poliovirus eliminates antigen exposure of infants to these pathogens. Such quasi-sterile epidemiological situations may actually increase the risk of outbreaks.” [5]
We know this is possible because there have been eruptions of measles in the USA in populations that were 100 percent vaccinated.
“The affected high school had 276 students and was in the same building as a junior high school with 135 students. A review of health records in the high school showed that all 411 students had documentation of measles vaccination on or after the first birthday, in accordance with Illinois law.” [6]
Within the scope of vaccination, when a quasi-sterile situation is created, and measles breaks out in the midst, the only solution within that paradigm is to vaccinate more people, more often. This is a backwards solution to the problem when considering who remains susceptible even in the face of full compliance: infants and non-immune adults. Susceptible age groups have essentially traded places since vaccinating. What used to happen with measles is that infants were protected by maternal antibodies, adults were protected by continued exposure, and infected children handled the disease normally and became immune for long periods of time. So, while measles vaccines have decreased the expression of measles infections, it has not necessarily improved the bigger picture. And certainly there are numerous troubles with the side effects of the vaccine.
Prior to vaccination, mothers were naturally immune to measles and passed that immunity to their infants via placenta and breast milk. Vaccinated mothers may have vaccine immunity, which is not the same immunologically, as natural immunity. One of the major differences in the vaccine-induced immunity is that it cannot be passed from mother to infant.
Since most vaccines are delivered by injection, the mucous membranes are bypassed and thus blood antibodies are produced but not mucosal antibodies. Mucosal exposure is what contributes to the production of antibodies in the mammary gland. A child’s exposure to the virus while being breastfed by a naturally immune mother would lead to an asymptomatic infection that results in long-term immunity to that virus. Vaccinated mothers have lower levels of virus-specific antibodies in the serum and milk compared to naturally immune mothers and thus their infants are unprotected.
“Infants whose mothers were born after 1963 had a measles attack rate of 33%, compared to 12% for infants of older mothers.” Infants whose mothers were born after 1963 are more susceptible to measles than are infants of older mothers. An increasing proportion of infants born in the United States may be susceptible to measles.” [7]
For the disease of measles, we see that while the clinical case rate may have declined with vaccination, the most sensitive members of the herd are at an increased risk- as a result of vaccination.
Dr Peter Aaby has produced volumes of research on measles in Africa. Initially there was a belief that measles infection was associated with immune suppression and higher long-term mortality, but that belief came from vaccine research, not natural measles research.
“The belief in persistent immune suppression was stimulated by increased mortality after high-titre measles vaccination.” [8]
Once natural measles was monitored long-term the knowledge changed. According to Aaby,
“When measles infection is mild, clinical measles has no long-term excess mortality and may be associated with better overall survival than no clinical measles infection. Sub-clinical measles is common among immunised children and is not associated with excess mortality.” [9]
Measles is mildest when the infected person is replete with vitamins C and A. The devastation and mortality you hear about with measles comes from starving populations.
Do you know that 30% of cases of measles in unvaccinated are missed because they are so mild?[10] Subclinical measles is an entity that most doctors today are unaware of. If they are missed in unvaccinated, and there are known outbreaks of measles in 100 percent vaccinated populations, are cases missed in vaccinated populations too? Is measles still alive and well but going unnoticed in vaccinated countries, until a well-publicized outbreak occurs, as vaccine necessity is being trumpeted? What doctor would know or is even looking for atypical measles?
Talk to your grandmother about measles. Ask her if she saw death and destruction from the disease. It was not a disease that needed eradication. The high death rates were in countries where children were undernourished and lacked vitamins necessary to process the virus. Alexander Langmuir, MD is known today as “the father of infectious disease epidemiology.” In 1949 he created the epidemiology section of what is now known as the CDC. He also headed the Polio Surveillance Unit that was started in 1955 after the polio vaccine misadventures. Dr Langmuir knew that measles was not a disease that needed eradication when he said:
“To those who ask me, ‘Why do you wish to eradicate measles?,’ I reply with the same answer that Hillary used when asked why he wished to climb Mt. Everest. He said, ‘Because it is there.’ To this may be added, “. . and it can be done.” [11]
Langmuir also knew that by the time vaccination was developed, measles mortality in the USA had already declined to minimal levels when he described measles as a
“… self-limiting infection of short duration, moderate severity, and low fatality…” [12]
The vaccine was created because it could be done, not because we needed it. Measles is not eradicated. Outbreaks happen all over the world, and will continue. And now infants will be unprotected because of the absence of maternal antibodies in their vaccinated mother’s milk. So much for protecting the most vulnerable in the herd.
Smallpox
“We were fortunate enough to address their own medical (and) health officials where we reminded them of the incidence of smallpox in formerly “immunized” Filipinos. We invited them to consult their own medical records and asked them to correct us if our own facts and figures disagreed. No such correction has been forthcoming, and we can only conclude that between 1918-1919 there were 112,549 cases of smallpox notified, with 60,855 deaths. Systematic (mass) vaccination started in 1905, and since its introduction case mortality increased alarmingly. Their own records comment that “The mortality is hardly explainable.”—Dr. Archie Kalokerinos from
Second Thoughts on Disease
Orthopox is a member of the family of Poxviridae. The ancestor of the poxviruses is not known but structural studies suggest it may have been an adenovirus or a species related to both the poxviruses and the adenoviruses. Orthopox viruses include cowpox(vaccinia), smallpox(variola), and monkeypox. Mutations do occur in these viruses, but at a very slow rate.
Between October 1970 and May 1971 a poxvirus was isolated from some symptomatic patients in West Africa. That virus is now known as “human monkeypox.” Monkeypox got its name because monkeys were the first animals known to have harbored the monkeypox virus. Scientists now say that the primary reservoirs for monkeypox virus are not monkeys but probably squirrels. WHO officials in 1976 had no idea what the true reservoir of infection was.[13] Today, according to CDC, it remains uncertain.
Smallpox was declared eradicated worldwide by the World Health Assembly on May 8,th 1980. Vaccination was stopped in the USA in 1972. However, poxviruses that were indistinguishable from smallpox continued to cause human disease.
Monkeys in surrounding areas where monkeypox outbreaks occur usually test negative for monkeypox. But prairie dogs, exotic rodents, Gambian rats, dormice, rope squirrels and other animals have tested positive. Nobody really knows when or where monkeypox viruses originated, but they seem to be close relatives of cowpox and smallpox. All three viruses have rodent reservoirs, which is important when considering the history and current transmission of smallpox and monkeypox. Today, monkeypox outbreaks are blamed on rodents or exotic pet imports, not person-to -person transmission even though human transmission does occur. Historically, smallpox reservoirs were also rodents – during a time when rodents were eaten as food and when infestations were commonplace. Yet in the discussion of smallpox outbreaks this is rarely mentioned. What we hear is how the vaccine eradicated the disease.
THIS ARTICLE states that monkeypox was first recorded in 1970 after the eradication of smallpox in the Democratic Republic of Congo. University of California, School of Public Health epidemiologist Dr Anne Rimoin states that monkeypox first arrived in humans after smallpox eradication, even though it has been on the earth for millennia.
“Monkeypox has probably occurred for millennia in central Africa, but it’s only since the eradication of smallpox that it’s been a disease that actually happens in humans,” Rimoin says. ”
There is absolutely zero certainty as to when monkeypox first colonized humans. It is more accurate to say that monkeypox was first detected in humans around the time that smallpox was being declared eradicated, not that it arrived in humans at that time. Differentiation tests were not carried out on most cases of pox in the past 200 years.
Laboratory diagnostic assays for monkeypox include virus isolation and electron microscopy, ELISA, immunofluorescent antibody assay, histopathologic analysis, and Polymerase Chain Reaction (PCR). Unfortunately, most of these methods are relatively nonspecific and are unable to differentiate monkeypox viral infection from infection with other poxviruses.[14] All but PCR are fraught with false positives, false negatives, and cross reactivity.
In the 1970s and 1980s, biochemical tests were unreliable in differentiating between monkeypox and smallpox. Animal challenge tests were historically used to determine the difference between monkeypox and smallpox. The technique involved inoculating rabbits and watching the characteristics of the pox. Initially the two kinds of pox appear similar in the rabbit, but after a few days, monkeypox distinguishes itself as it becomes hemorrhagic. LINK TO DOC HERE.
The problem with such means for distinction is that there has always been a hemorrhagic form of smallpox.
“There are four types of variola major smallpox: ordinary; modified; flat; and hemorrhagic…. Hemorrhagic smallpox has a much shorter incubation period and is likely not to be initially recognized as smallpox when presenting to medical care. Smallpox vaccination also does not provide much protection, if any, against hemorrhagic smallpox.” [15]
ELISA is not much of a gold standard test as it casts a very wide net, and is fraught with false positive and false negative results.[16] ELISA TUTORIAL HERE.
The genomes of these three orthopox viruses are extremely conserved and require a technology that can detect the minute differences. Polymerase Chain Reaction (PCR) is a newer test that came on the scene in the 1980s. This test is different in that it can potentially find pieces of DNA from a virus. The genetic sequence of a virus has to first be mapped prior to designing a PCR test. So before smallpox, cowpox, or monkeypox viruses were characterized genetically, PCR could not be applied to distinguish between them. The first PCR test for monkeypox was used in 1997, but highly sensitive real-time PCR was not in use until 2006.[17] Different biotech companies have developed different tests that use different primers. PCR, while highly sensitive and specific at about 98%, still has drawbacks, contamination being the biggest one. No test is foolproof. Nonetheless it is probably the best assay available for detection and distinction today.
vaccinationcouncil.org/2012/07/05/herd-immunity-the-flawed-science-and-failures-of-mass-vaccination-suzanne-humphries-md-3/
The hype about herd immunity unfortunately creates a wall of hostility between those who vaccinate and those who delay some vaccines, avoid certain vaccines, or quit vaccinating altogether.
Since the beginning of vaccination, there is little proof that vaccines are responsible for eradicating disease even when herd immunity vaccination levels have been reached. Yet celebrity doctors rattle on about your unvaccinated neighbor being the biggest threat to your child – as if vaccination was the only way to avoid an illness or stay healthy.
To make matters worse, this intimidation to vaccinate is played out in an environment where WHO and vaccine manufacturers have been accused of scandalous misrepresentations of disease risk or vaccine safety and effectiveness. If the allegations against these entities are true, which I believe they are, we are being systematically altered, sickened and manipulated by powerful governing bodies that either don’t understand the risks of vaccination, or don’t care. We are told that the health of the herd is more important than any single life, and you now have no conventional legal recourse when your little sheep is wounded by any type of vaccine, no matter how it happened.
The money factor
The population of the world is expanding over the past 200 years where vaccines have been used, and this makes obtaining herd immunity even more expensive and impossible today than ever. How many billions of people would need to be vaccinated how many times to eradicate just one illness based on the theory of vaccine herd immunity? How much would that cost? Consider the cost of vaccines, refrigeration, vaccinators, and hazardous waste removal. Just look at chicken pox vaccine at $7.25 per dose for the CDC discounted price. Each child gets 2 doses. The US census shows 25.7 million children between 0-5 years. Just the cost of the vaccines to vaccinate each of those children, not including the lifetime of boosters, refrigeration, administration and waste, costs the government over 372 million dollars. Chicken pox vaccines are now being exposed for the failure they are, but vaccine profits are still climbing. After the members of the herd stopped transmitting natural immunity to each other because of the vaccine effect, shingles increased. The response- more doses of vaccine for children and a shingles vaccine to adults. HERE is a recent journal abstract describing the failure of herd protection by varicella vaccines. In a SEPARATE DOCUMENT, Dr. Goldman says:
“Prior to the universal varicella vaccination program, 95% of adults experienced natural chickenpox (usually as school aged children)—these cases were usually benign and resulted in long term immunity. This high percentage of individuals having long term immunity has been compromised by mass vaccination of children which provides at best 70 to 90% immunity that is temporary and of unknown duration—shifting chickenpox to a more vulnerable adult population where chickenpox carries 20 times more risk of death and 15 times more risk of hospitalization compared to children. Add to this the adverse effects of both the chickenpox and shingles vaccines as well as the potential for increased risk of shingles for an estimated 30 to 50 years among adults. The Universal Varicella (Chickenpox) Vaccination Program now requires booster vaccines; however, these are less effective than the natural immunity that existed in communities prior to licensure of the varicella vaccine.”
In India, doctors are concerned about profit margins being protected before human lives, with recommendations to vaccinate every child with more expensive, newer vaccines. Dr Jacob Puliyel describes the problems he sees..
“An analysis in the Lancet showed how the Pneumococcal vaccine reduces only 4 cases of pneumonia per 1000 children. The cost for vaccinating 1000 children comes to $ 12,750. Treating the 4 cases of pneumonia in India using WHO protocol, would cost $ 1. The pneumococcus strains prevalent in India are nearly all sensitive to inexpensive antibiotics like penicillin. In the US which has been using the pneumococcal vaccine for some years now, there has been a strain shift – strains covered in the vaccine are being replaced by other strains. Ominously the new strains are more antibiotic resistant. Vaccine has simply made the problem of pneumococcal disease worse. Yet this vaccine is being pushed in Africa and Asia.…It is not about lives lost in poor countries – it is all about the cash register. These organizations and their sponsors have profit margins to protect. Ethics is not a major issue with them.”
The profits to vaccine manufacturers and the government must be enormous.
The CDC is in the vaccine business. Members of the CDC’s Vaccine Advisory Committee accept payment from vaccine manufacturers. Sanofi-Pasteur, Merck and others specifically seek to employ CDC staff once their contracts have run out. Relationships have included sharing a vaccine patent, owning stock in a vaccine company, payments for research, payment to monitor manufacturer vaccine tests, and funding academic departments. Thanks to a 1980 law, the CDC currently holds dozens of licensing agreements. It also has numerous ongoing projects to collaborate on new vaccines.
The science?
What science is there behind the belief that the herd can be protected by vaccinating enough of the sheep? Or that any disease has been eradicated from the planet thanks to a vaccine?
Recently, I was told by a vaccinator that “herd immunity is just a definition and so it can’t actually be wrong. “ But the assumption of a 95% vaccination rate giving the herd a chance at eradication or higher levels of health – can be wrong. Let us go back in time and see just where the idea behind this definition probably comes from. Dr A.W. Hedrich in 1929, studied the natural occurrence of measles.
“On the basis of field surveys of various workers, it is inferred that approximately 95% of the children in cities suffer measles attacks by the fifteenth birthday. “ [1]
Before vaccines, outbreaks of measles were observed in 2 to 3 year cycles, and 95% of the population developed immunity by the age of fifteen.
The original idea that vaccination could strengthen the herd’s immunity, assumed that there was only one clinical event, and that one natural exposure equated life -long immunity. But this was not the case back when the diseases circulated freely. Vaccinators miss the point that the body defends most efficiently as a result of ongoing re-exposure. They try to mimic this with boosters. But the vaccination plan leaves the elderly(due to vaccine-induced immunity being short-lived and antigens taken out of circulation) and the very young(due to lack of transferrable maternal immunity) more vulnerable to several diseases that were not a threat to them before vaccination. In the case of chicken pox, vaccination renders the elderly more apt to shingles infections, because the herd has now lost the continued and benign re-exposures to children with chicken pox.
Instead of figuring out why a very small number develop dangerous invasive conditions, vaccine enthusiasts recommend vaccinating as often as possible in order to protect against something that would never be a danger to the vast majority of those vaccinated. If you constantly swab throats of healthy people most would be carrying and circulating supposed pathogens, as commensals.[2] At any one time in any society, neisseriae(the bacteria isolated in some cases of meningitis) are being circulated, yet most of the time, nothing happens, other than the body notes it, defends against it, and the host has no idea that they even carried it.[3] But now that vaccines for as many types as possible have been developed, the vaccine is the answer to the problem. This is typical for diseases today.
Measles
It is well documented that prior to vaccination, cycles of natural infection added to the herd’s immunity.
“The formal demonstration that both maternal antibodies and early exposure to infection are required for long-term protection illustrated that constant re-infection cycles have an essential role in building a stable herd immunity.
In a population that is not constantly exposed to the infection during early infancy under the immunologic umbrella of maternal antibodies or vaccinated thoroughly a serious risk of re-emerging infections may arise. “ [4]
Vaccination creates a “quasi-sterile” environment that opens up the possibility of disease outbreaks.
“Attempts to eradicate measles virus or poliovirus eliminates antigen exposure of infants to these pathogens. Such quasi-sterile epidemiological situations may actually increase the risk of outbreaks.” [5]
We know this is possible because there have been eruptions of measles in the USA in populations that were 100 percent vaccinated.
“The affected high school had 276 students and was in the same building as a junior high school with 135 students. A review of health records in the high school showed that all 411 students had documentation of measles vaccination on or after the first birthday, in accordance with Illinois law.” [6]
Within the scope of vaccination, when a quasi-sterile situation is created, and measles breaks out in the midst, the only solution within that paradigm is to vaccinate more people, more often. This is a backwards solution to the problem when considering who remains susceptible even in the face of full compliance: infants and non-immune adults. Susceptible age groups have essentially traded places since vaccinating. What used to happen with measles is that infants were protected by maternal antibodies, adults were protected by continued exposure, and infected children handled the disease normally and became immune for long periods of time. So, while measles vaccines have decreased the expression of measles infections, it has not necessarily improved the bigger picture. And certainly there are numerous troubles with the side effects of the vaccine.
Prior to vaccination, mothers were naturally immune to measles and passed that immunity to their infants via placenta and breast milk. Vaccinated mothers may have vaccine immunity, which is not the same immunologically, as natural immunity. One of the major differences in the vaccine-induced immunity is that it cannot be passed from mother to infant.
Since most vaccines are delivered by injection, the mucous membranes are bypassed and thus blood antibodies are produced but not mucosal antibodies. Mucosal exposure is what contributes to the production of antibodies in the mammary gland. A child’s exposure to the virus while being breastfed by a naturally immune mother would lead to an asymptomatic infection that results in long-term immunity to that virus. Vaccinated mothers have lower levels of virus-specific antibodies in the serum and milk compared to naturally immune mothers and thus their infants are unprotected.
“Infants whose mothers were born after 1963 had a measles attack rate of 33%, compared to 12% for infants of older mothers.” Infants whose mothers were born after 1963 are more susceptible to measles than are infants of older mothers. An increasing proportion of infants born in the United States may be susceptible to measles.” [7]
For the disease of measles, we see that while the clinical case rate may have declined with vaccination, the most sensitive members of the herd are at an increased risk- as a result of vaccination.
Dr Peter Aaby has produced volumes of research on measles in Africa. Initially there was a belief that measles infection was associated with immune suppression and higher long-term mortality, but that belief came from vaccine research, not natural measles research.
“The belief in persistent immune suppression was stimulated by increased mortality after high-titre measles vaccination.” [8]
Once natural measles was monitored long-term the knowledge changed. According to Aaby,
“When measles infection is mild, clinical measles has no long-term excess mortality and may be associated with better overall survival than no clinical measles infection. Sub-clinical measles is common among immunised children and is not associated with excess mortality.” [9]
Measles is mildest when the infected person is replete with vitamins C and A. The devastation and mortality you hear about with measles comes from starving populations.
Do you know that 30% of cases of measles in unvaccinated are missed because they are so mild?[10] Subclinical measles is an entity that most doctors today are unaware of. If they are missed in unvaccinated, and there are known outbreaks of measles in 100 percent vaccinated populations, are cases missed in vaccinated populations too? Is measles still alive and well but going unnoticed in vaccinated countries, until a well-publicized outbreak occurs, as vaccine necessity is being trumpeted? What doctor would know or is even looking for atypical measles?
Talk to your grandmother about measles. Ask her if she saw death and destruction from the disease. It was not a disease that needed eradication. The high death rates were in countries where children were undernourished and lacked vitamins necessary to process the virus. Alexander Langmuir, MD is known today as “the father of infectious disease epidemiology.” In 1949 he created the epidemiology section of what is now known as the CDC. He also headed the Polio Surveillance Unit that was started in 1955 after the polio vaccine misadventures. Dr Langmuir knew that measles was not a disease that needed eradication when he said:
“To those who ask me, ‘Why do you wish to eradicate measles?,’ I reply with the same answer that Hillary used when asked why he wished to climb Mt. Everest. He said, ‘Because it is there.’ To this may be added, “. . and it can be done.” [11]
Langmuir also knew that by the time vaccination was developed, measles mortality in the USA had already declined to minimal levels when he described measles as a
“… self-limiting infection of short duration, moderate severity, and low fatality…” [12]
The vaccine was created because it could be done, not because we needed it. Measles is not eradicated. Outbreaks happen all over the world, and will continue. And now infants will be unprotected because of the absence of maternal antibodies in their vaccinated mother’s milk. So much for protecting the most vulnerable in the herd.
Smallpox
“We were fortunate enough to address their own medical (and) health officials where we reminded them of the incidence of smallpox in formerly “immunized” Filipinos. We invited them to consult their own medical records and asked them to correct us if our own facts and figures disagreed. No such correction has been forthcoming, and we can only conclude that between 1918-1919 there were 112,549 cases of smallpox notified, with 60,855 deaths. Systematic (mass) vaccination started in 1905, and since its introduction case mortality increased alarmingly. Their own records comment that “The mortality is hardly explainable.”—Dr. Archie Kalokerinos from
Second Thoughts on Disease
Orthopox is a member of the family of Poxviridae. The ancestor of the poxviruses is not known but structural studies suggest it may have been an adenovirus or a species related to both the poxviruses and the adenoviruses. Orthopox viruses include cowpox(vaccinia), smallpox(variola), and monkeypox. Mutations do occur in these viruses, but at a very slow rate.
Between October 1970 and May 1971 a poxvirus was isolated from some symptomatic patients in West Africa. That virus is now known as “human monkeypox.” Monkeypox got its name because monkeys were the first animals known to have harbored the monkeypox virus. Scientists now say that the primary reservoirs for monkeypox virus are not monkeys but probably squirrels. WHO officials in 1976 had no idea what the true reservoir of infection was.[13] Today, according to CDC, it remains uncertain.
Smallpox was declared eradicated worldwide by the World Health Assembly on May 8,th 1980. Vaccination was stopped in the USA in 1972. However, poxviruses that were indistinguishable from smallpox continued to cause human disease.
Monkeys in surrounding areas where monkeypox outbreaks occur usually test negative for monkeypox. But prairie dogs, exotic rodents, Gambian rats, dormice, rope squirrels and other animals have tested positive. Nobody really knows when or where monkeypox viruses originated, but they seem to be close relatives of cowpox and smallpox. All three viruses have rodent reservoirs, which is important when considering the history and current transmission of smallpox and monkeypox. Today, monkeypox outbreaks are blamed on rodents or exotic pet imports, not person-to -person transmission even though human transmission does occur. Historically, smallpox reservoirs were also rodents – during a time when rodents were eaten as food and when infestations were commonplace. Yet in the discussion of smallpox outbreaks this is rarely mentioned. What we hear is how the vaccine eradicated the disease.
THIS ARTICLE states that monkeypox was first recorded in 1970 after the eradication of smallpox in the Democratic Republic of Congo. University of California, School of Public Health epidemiologist Dr Anne Rimoin states that monkeypox first arrived in humans after smallpox eradication, even though it has been on the earth for millennia.
“Monkeypox has probably occurred for millennia in central Africa, but it’s only since the eradication of smallpox that it’s been a disease that actually happens in humans,” Rimoin says. ”
There is absolutely zero certainty as to when monkeypox first colonized humans. It is more accurate to say that monkeypox was first detected in humans around the time that smallpox was being declared eradicated, not that it arrived in humans at that time. Differentiation tests were not carried out on most cases of pox in the past 200 years.
Laboratory diagnostic assays for monkeypox include virus isolation and electron microscopy, ELISA, immunofluorescent antibody assay, histopathologic analysis, and Polymerase Chain Reaction (PCR). Unfortunately, most of these methods are relatively nonspecific and are unable to differentiate monkeypox viral infection from infection with other poxviruses.[14] All but PCR are fraught with false positives, false negatives, and cross reactivity.
In the 1970s and 1980s, biochemical tests were unreliable in differentiating between monkeypox and smallpox. Animal challenge tests were historically used to determine the difference between monkeypox and smallpox. The technique involved inoculating rabbits and watching the characteristics of the pox. Initially the two kinds of pox appear similar in the rabbit, but after a few days, monkeypox distinguishes itself as it becomes hemorrhagic. LINK TO DOC HERE.
The problem with such means for distinction is that there has always been a hemorrhagic form of smallpox.
“There are four types of variola major smallpox: ordinary; modified; flat; and hemorrhagic…. Hemorrhagic smallpox has a much shorter incubation period and is likely not to be initially recognized as smallpox when presenting to medical care. Smallpox vaccination also does not provide much protection, if any, against hemorrhagic smallpox.” [15]
ELISA is not much of a gold standard test as it casts a very wide net, and is fraught with false positive and false negative results.[16] ELISA TUTORIAL HERE.
The genomes of these three orthopox viruses are extremely conserved and require a technology that can detect the minute differences. Polymerase Chain Reaction (PCR) is a newer test that came on the scene in the 1980s. This test is different in that it can potentially find pieces of DNA from a virus. The genetic sequence of a virus has to first be mapped prior to designing a PCR test. So before smallpox, cowpox, or monkeypox viruses were characterized genetically, PCR could not be applied to distinguish between them. The first PCR test for monkeypox was used in 1997, but highly sensitive real-time PCR was not in use until 2006.[17] Different biotech companies have developed different tests that use different primers. PCR, while highly sensitive and specific at about 98%, still has drawbacks, contamination being the biggest one. No test is foolproof. Nonetheless it is probably the best assay available for detection and distinction today.