Install the app
How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

Presser

Admin
Staff member
Administrator
Moderator
[h=1]I guess if your fat, your just shit out of luck lmao

Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress.[/h][h=3][/h]

<abstracttext>Testosterone replacement improves metabolic parameters and cognitive function in hypogonadism. However, the effects of testosterone therapy on cognition in obese condition with testosterone deprivation have not been investigated. We hypothesized that testosterone replacement improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function, and hippocampal synaptic plasticity.

Thirty male Wistar rats had either a bilateral orchiectomy (ORX: O, n = 24) or a sham operation (S, n = 6). ORX rats were further divided into two groups fed with either a normal diet (NDO) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n = 6/subgroup) and were given either castor oil or testosterone (2 mg/kg/day, s.c.) for 4 weeks. At the end of this protocol, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity, and brain mitochondrial function were determined. We found that testosterone replacement increased peripheral insulin sensitivity, decreased circulation and brain oxidative stress levels, and attenuated brain mitochondrial ROS production in HFO rats.

However, testosterone failed to restore hippocampal synaptic plasticity and cognitive function in HFO rats. In contrast, in NDO rats, testosterone decreased circulation and brain oxidative stress levels, attenuated brain mitochondrial ROS production, and restored hippocampal synaptic plasticity as well as cognitive function. These findings suggest that testosterone replacement improved peripheral insulin sensitivity and decreased oxidative stress levels, but failed to restore hippocampal synaptic plasticity and cognitive function in testosterone-deprived obese rats. However, it provided beneficial effects in reversing cognitive impairment in testosterone-deprived non-obese rats.</abstracttext>

 
[h=1]Obesity accelerates cognitive decline by aggravating mitochondrial dysfunction, insulin resistance and synaptic dysfunction under estrogen-deprived conditions.[/h]<abstracttext>Chronic consumption of a high-fat diet (HF) causes peripheral insulin resistance, brain insulin resistance, brain mitochondrial dysfunction and cognitive impairment. Estrogen deprivation has also been found to impair cognition. However, the combined effect of both conditions on the brain is unclear. We hypothesized that estrogen deprivation causes brain insulin resistance, brain mitochondrial dysfunction, hippocampal synaptic dysfunction and cognitive impairment, and that consumption of a HF accelerates these impairments in an estrogen-deprived condition.

Seventy-two female rats were divided into sham (S) and ovariectomized (O) groups. Rats in each group were further divided into two subgroups to be fed with either a normal diet (ND) or HF for 4, 8 and 12 weeks. At the end of each period, the Morris water maze test was carried out, after which the blood and brain were collected for metabolic and brain function analysis. Obesity, peripheral insulin resistance, increased brain oxidative stress and hippocampal synaptic dysfunction were observed at the eighth week in the NDO, HFS and HFO rats. However, these impairments were worse in the HFO rats. Interestingly, brain insulin resistance, brain mitochondrial dysfunction and cognitive impairment developed earlier (week eight) in the HFO rats, whereas these conditions were observed later at week 12 in the NDO and HFS rats.

Either estrogen deprivation or HF appears to cause peripheral insulin resistance, increased brain oxidative stress, hippocampal synaptic dysfunction, brain mitochondrial dysfunction and brain insulin resistance, which together can lead to cognitive impairment. A HF accelerates and aggravates these deleterious effects under estrogen-deprived conditions.</abstracttext>

 
Back
Top